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Non-Local Approximation
Iris Hammond & Dr. Jeff Ledford 

Longwood University Department of Mathematics & Computer Science

Introduction

This project is a continuation of work previously done by Dr. Jeff 
Ledford. This research extends the non-local approximation 
schemes found in [1,2,3]. We seek approximands of the form 
𝐶1𝜙 𝑥 − 𝑥0 + 𝐶2𝜙 𝑥 − 𝑥1 + ⋯ + 𝐶𝑛𝜙 𝑥 − 𝑥𝑛−1 which 
approximate continuous functions uniformly on closed intervals 

and interpolate the data 𝑥𝑗 , 𝑦𝑗 : 𝑗 = 0, 1, … , 𝑛 − 1 . Our 

function 𝜙 is taken to be the (general) multiquadric 

𝜙 𝑥 = 1 + 𝑥2 −3/2
pictured below. This research is still 

ongoing. 

Methods

The leading coefficients seems to be an = 
𝑛 + 2

2
. The proof 

showing this pattern was then sought. We have 
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,

splitting our problem into two cases, depending on the parity of n, 
allows us to use a Lemma 1 in [2] to show that 𝑎𝑛 ≠ 0. When n is 
odd, we can reduce the expression to
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where 

𝑄 𝑥 =
2𝑥 + 1 2𝑥 + 3 ⋯ 2𝑥 + 2M + 1

M + 1 2M + 1
which is an Mth degree polynomial, whose leading coefficient is 
2M.  Now we may use Lemma 1 in [2] which provides,

Lemma 1. For 𝑁 ∈ ℕ, 0 ≤ 𝑙 ≤ 𝑁, and p a polynomial of degree l. 
We have, 
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−1 𝑁𝑎𝑁 ⋅ 𝑁! 𝑙 = 𝑁

where 𝑎𝑁 is the leading coefficient of p.
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which is the desired result when 𝑛 = 2M + 1. The even case is 
virtually nearly identical.
To clean up this argument, we extended Lemma 1 in [2] to include 
polynomials of degree M+1. 

Lemma 2. Suppose 𝑀 ∈ ℕ, then we have 
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Proof. We calculate this directly from the symmetry in the 
binomial coefficients.  Let M=1,2,3,… and consider the sum
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𝑗𝑀+1 = 
𝑗=0

𝑀
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𝑗𝑀+1 ; let k=M-j

Proof
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where we reindexed, then factored out (-1) to arrive at the last 
equality.  Now adding these expressions together and using Lemma 
1 in [2] yields:

□

We first expand 𝜙(x-y) in a Taylor series in 
1

𝑦𝑛, this yields 

coefficient polynomials 𝐴𝑛 𝑥 . If the set of these polynomials 
span the space of all polynomials, Π 𝑥 , then the uniform 
approximation property will follow from the Stone-Weierstrass
theorem.  A sufficient condition for spanning Π 𝑥 involves 
showing that the leading coefficients of 𝐴𝑛 𝑥 are non-zero.

We used Maple to generate the first few coefficient polynomials.
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