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Iris Hammond & Dr. Jeff Ledford

Longwood University Department of Mathematics & Computer Science

Introduction

This project is a continuation of work previously done by Dr. Jeff
Ledford. This research extends the non-local approximation
schemes found in [1,2,3]. We seek approximands of the form

Cip(x —x9) + Cob(x —x1) + -+ C,,db(x — x,,_1) Which
approximate continuous functions uniformly on closed intervals
and interpolate the data {(xj,yj):j =0,1,...,n — 1} . Our
function ¢ is taken to be the (general) multiquadric

d(x) = (1 + xz)_g/zpictured below. This research is still
ongoing.

Methods

We first expand ¢(x-y) in a Taylor series in —;, this yields

yn
coefficient polynomials A, (x). If the set of these polynomials

span the space of all polynomials, 1| x|, then the uniform
approximation property will follow from the Stone-Weierstrass
theorem. A sufficient condition for spanning I1|x] involves
showing that the leading coefficients of A,(x) are non-zero.

Proof

We used Maple to generate the first few coefficient polynomials.
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where we reindexed, then factored out (-1) to arrive at the last

splitting our problem into two cases, depending on the parity of n,
allows us to use a Lemma 1 in [2] to show that a,, # 0. When nis

equality. Now adding these expressions together and using Lemma
1in [2] yields:
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odd, we can reduce the expression to
( 1)M+1
s = G () 5 Y (e
C(2x+DCx+3)-(2x+2M+ 1) = 2,- = 1)) ( ) Y =G —m)mH]
Qx) = (M + 1)(2M + 1) u

M
which is an Mth degree polynomial, whose leading coefficient is = zj—o(_l)] (] ) (M +1)j"M

2M. Now we may use Lemma 1 in [2] which provides,
v J
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which is the desired result whenn = 2M + 1. The even case is M1
virtually nearly identical. = 2 ( , ) ((—DMMm!)
To clean up this argument, we extended Lemma 1 in [2] to include
polynomials of degree M+1. 2 (—1)’ ( ) M+l — (—1)M ) (M;' 1)
j=0
Lemma 2. Suppose M € N, then we have References
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Proof. We calculate this directly from the symmetry in the
binomial coefficients. Let M=1,2.3,... and consider the sum

2] o( 1)1( ) M+1 _ Z] O( 1)1( ])]'M“;Ietk: y



	Non-Local Approximation
	Recommended Citation

	PowerPoint Presentation

