Longwood University

Digital Commons @ Longwood University

Fall Showcase for Research and Creative Inquiry

Office of Student Research

Fall 11-18-2020

Adios Adjuvant: Combination Immunotherapy for Pediatric Acute Lymphoblastic Leukemia (ALL) Patients

Arleigh Wood Longwood University

Follow this and additional works at: https://digitalcommons.longwood.edu/rci_fall

Part of the Biology Commons

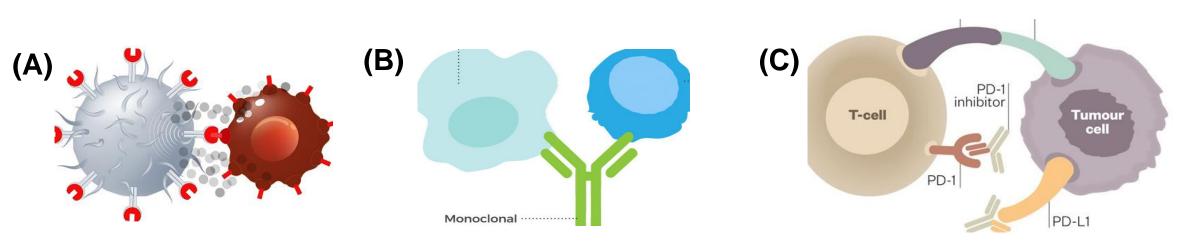
Recommended Citation

Wood, Arleigh, "Adios Adjuvant: Combination Immunotherapy for Pediatric Acute Lymphoblastic Leukemia (ALL) Patients" (2020). Fall Showcase for Research and Creative Inquiry. 80. https://digitalcommons.longwood.edu/rci_fall/80

This Poster is brought to you for free and open access by the Office of Student Research at Digital Commons @ Longwood University. It has been accepted for inclusion in Fall Showcase for Research and Creative Inquiry by an authorized administrator of Digital Commons @ Longwood University. For more information, please contact hamiltonma@longwood.edu, alwinehd@longwood.edu.

ADIOS ADJUVANT

COMBINATION IMMUNOTHERAPY FOR PEDIATRIC ACUTE LYMPHOBLASTIC LEUKEMIA (ALL) PATIENTS Arleigh Wood

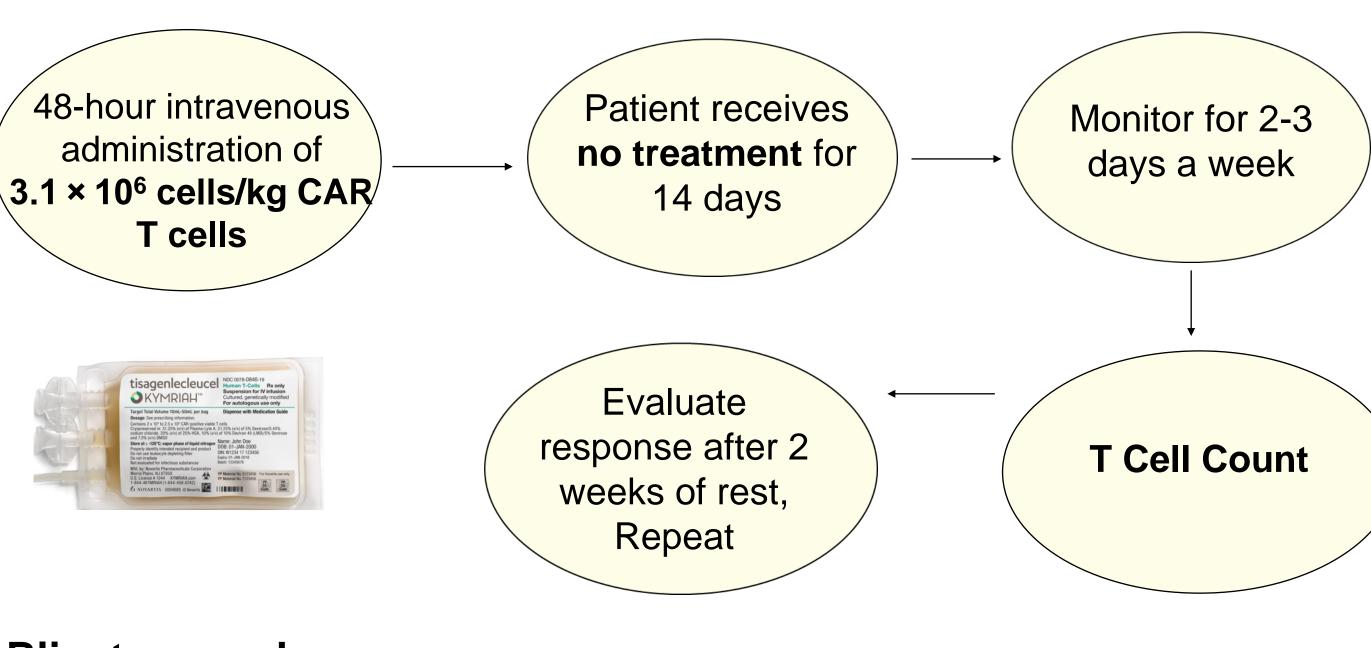

Longwood University Department of Biological and Environmental Sciences

INTRODUCTION

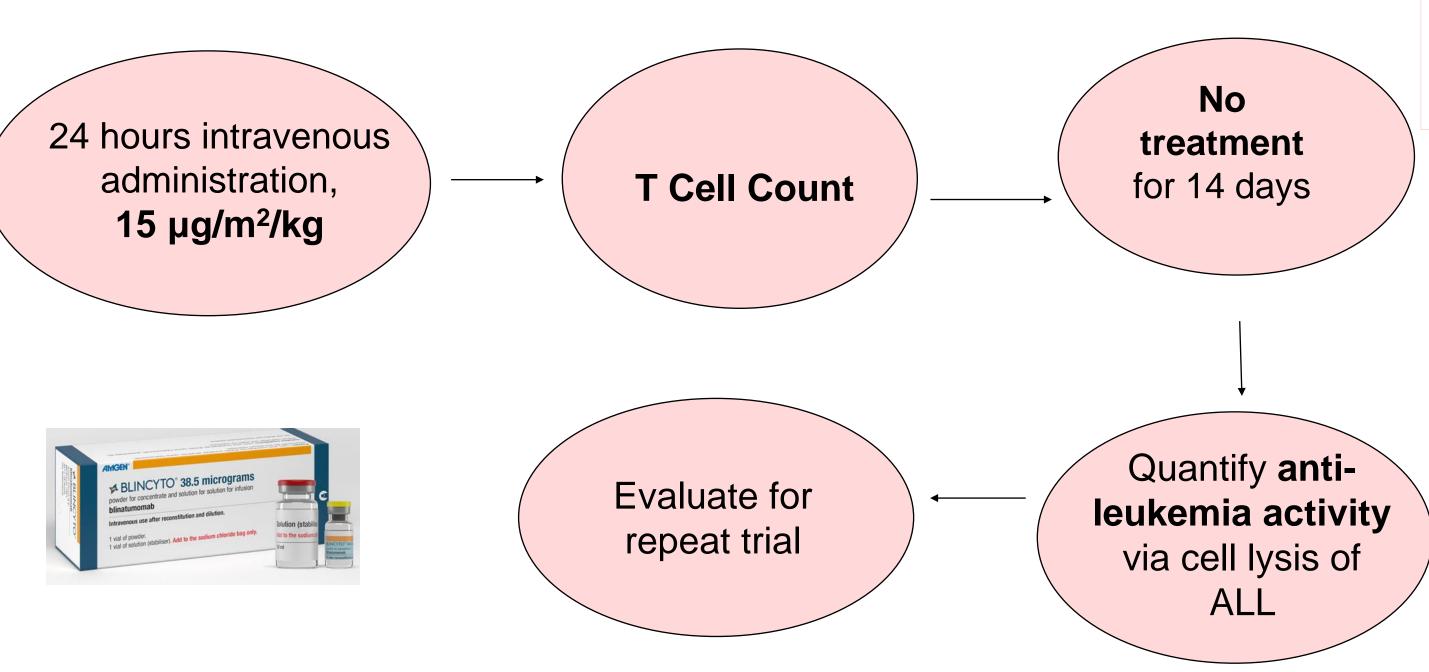
TRADITIONAL TREATMENTS CANCER IMMUNOTHERAPIES UNLEASHES the patient's own immune system LEALTHY CELL DRUG OR RADIATION IMMUNOTHERAPY

Figure 1. Immunotherapies has less side effects and prolonged protection from chemotherapies (ACS, 2020).

- Around 60% of pediatric cancers cases are Acute Lymphoblastic Leukemia (Lee, et al. 2016).
- Chemotherapy
 was once believed to be a
 cure for multiple cancers
 (ACS, 2020).
- Chemotherapy has intense side effects with less prolonged protection compared to immunotherapies (Figure 1).
- Am immunological approach to the treatment of cancer is **less traumatic** to the body and yields **higher remission rates** than previous adjuvant therapies.
- Common immunotherapies include monoclonal antibodies (A), checkpoint blockade inhibitors (B), and CAR T cell therapy (C) (Frey, 2019).


HYPOTHESIS

If two successful independent immunotherapies, **Kymriah® and Blinatumomab**, are combined and administered via repeated intravenous injections, then patients with Acute Lymphoblastic Leukemia will **achieve higher rates of remission** than if only one immunotherapy was administered.


PROPOSED METHODS

Test Group of 30 children with **relapsed ALL** will recieve simultaneous injections of Kymriah and Blinatumomab

Kymriah®

Blinatumomab

EXPECTED RESULTS

- **Kymriah**®
- 75% Remission Rate for all patients
- 19 months until remission is reached
- 50% of patients will have event-free survival
- In remission for 61 months before more treatment is needed (average).

Table 1. The responses in a test group of 38 pediatric leukemia patients in secondary relapse after steady dosage of Kymriah for 48 hours and 14 days of no treatment (Boyiadzis, 2018).

Blinatumomab

- Over 50% will achieve complete remission
- Only 4% incidence of CRS (Cytokine Release Syndrome)
- 14% of test group achieved MRD (Minimum Disease Response)

	Clinical trials of blinatumomab and outcomes						
Clinical trial	Phase Population of trial		Dosing	Primary end points	Secondary end points	Number of patients	
	Phase	Median age: 8	Phase I: maximum	Phase I: MTD;	Phase II:	Phase I: 49	
Stackelberg	I/II	years; relapsed	tolerated dose of	Phase II: CR	proportion of	Phase II: 4	
et al,		or refractory	blinatumomab was		patients HSCT		
2016 <u>20</u>		B-cell ALL	15 μg/m ² /24 hours,	first two	post-Tx among		
2016 <u>20</u>		B-cell ALL	15 μg/m ⁻ /24 hours, initiated at 5	cycles 32%	post-1x among responders		
			μg/m ² /24 hours for		48%: RFS		

Table 2. Responses of a test group of 44-49 patients to a maximum dose of 15 μ g/m2/kg Blinatumomab. Responses differed based on trial phase and relapse phase.

IMPLICATIONS

- Combining two successful immunotherapies is likely to result in a **high** success rate (near 100%).
- In most studies, side effects of immunotherapies were incomparable to adjuvant therapies (1-4% incidence).
- Cost of T cell therapies is a major complication of the availability of this research (\$800K-\$1M).
- Cytokine release syndrome is a constant battle for immunotherapies that is being heavily researched in clinical trials.
- The quality of life of pediatric patients will be significantly improved during treatment.

PROJECT AIM

The goal of the experiment is to take two successful treatments for ALL with minimum 50% remission rates, **Blinatumomab and Kymriah**, and combine them to create a non-invasive, FDA approved immunotherapy with a near 100% remission rate within 10 years.

FUTURE STUDIES

- Begin in vitro studies to test for CRS and side effects of combination of therapies
- Progress to in vivo studies in mice to test how drugs interact in circulatory system of model organism with ALL
- Eventually progress to a series of clinical trials to get FDA approval

SOURCES CITED

Immunotherapy. https://www.cancer.org/cancer/acute-myeloid-leukemia/about/new-research.html

American Cancer Society. (2020). What's New in Acute Myeloid Leukemia (AML) Research:

• Lee, K. J., Chow, V., Weissman, A., Tulpule, S., Aldoss, I., & Akhtari, M. (2016). Clinical use of

blinatumomab for B-cell acute lymphoblastic leukemia in adults. Therapeutics and clinical risk

- Boyiadzis, M. M., Dhodapkar, M. V., Brentjens, R. J., Kochenderfer, J. N., Neelapu, S. S., Maus, M. V.,
 Porter, D. L., Maloney, D. G., Grupp, S. A., Mackall, C. L., June, C. H., & Bishop, M. R. (2018). Chimeric
 antigen receptor (CAR) T therapies for the treatment of hematologic malignancies: clinical perspective and
 significance. Journal for immunotherapy of cancer, 6(1), 137. https://doi.org/10.1186/s40425-018-0460-5
- significance. Journal for immunotherapy of cancer, 6(1), 137. https://doi.org/10.1186/s40425-018-0460-5
 Frey, NV. (2019). Chimeric antigen receptor T cells for acute lymphoblastic leukemia. Am J Hematol, 94: \$24–\$27
- management, 12, 1301–1310.
 von Stackelberg A, Locatelli F, Zugmaier G, Handgretinger R, Trippett TM, Rizzari C, et al. (2014). Phase 1/2 study in pediatric patients with relapsed/refractory B-cell precursor acute lymphoblastic leukemia (BCP-ALL) receiving blinatumomab treatment. Blood. 124(21):2292