Punicic Acid as a Possible Supplemental Treatment for Adolescent Type I Diabetes

Murriel Grimes
Longwood University

Follow this and additional works at: https://digitalcommons.longwood.edu/rci_spring

Part of the Biology Commons

Recommended Citation
Grimes, Murriel, "Punicic Acid as a Possible Supplemental Treatment for Adolescent Type I Diabetes" (2019). Spring Showcase for Research and Creative Inquiry. 45.
https://digitalcommons.longwood.edu/rci_spring/45

This Poster is brought to you for free and open access by the Research & Publications at Digital Commons @ Longwood University. It has been accepted for inclusion in Spring Showcase for Research and Creative Inquiry by an authorized administrator of Digital Commons @ Longwood University. For more information, please contact hamiltonma@longwood.edu, alwinehd@longwood.edu.
Punicic acid as a possible supplemental treatment of adolescent type I diabetes

Murriel Grimes
Department of Biological and Environmental Sciences

Background

Type 1 Diabetes
- Diabetes mellitus type 1
- Chronic metabolic disease where the pancreas doesn’t produce insulin
- 5% of the 415 million diagnosed with diabetes have type 1

What causes it?
- Usually follows the body’s autoimmune response
- Genetics
- Viruses
- Environmental factors

Problems with insulin
- Prices have nearly doubled from 2012 to 2016, with this trend continuing
- We need a more affordable, accessible treatment for this disease

Specific Aim

Punicic acid
- Component of pomegranate oil
- There has been success with punicic acid as a treatment for type 2 diabetes in the past
- I propose that we investigate punicic acid’s antidiabetic effects on type 1 diabetes

Research Question

Will a combination of punicic acid and insulin have antidiabetic effects on type 1 diabetes patients?

Hypothesis

Potential Pitfalls

What could go wrong?
- No improvement in:
 - Beta cell function
 - Blood glucose level homeostasis
 - Visceral fat percentage
 OR
 - Subjects being treated with insulin showed improved results over insulin + punicic acid

Potential Conclusions

- Improved PBC functioning, blood glucose homeostasis, and decreased visceral fat percentage
- Better knowledge of type 1 diabetes
- Increase in the manageability of the disease
- Alternative to insulin treatments

Methods

Induce type 1 diabetes in adolescent rats
Allow control group to function normally
Treat group of rats with insulin
Treat group of rats with insulin + punicic acid
Measure blood-glucose levels of each rat after 16 weeks

Literature Cited