CCL21 Protein Leads to Advancements in Understanding Lung Transplant Rejection

Cecilie Elliott
Longwood University

Follow this and additional works at: https://digitalcommons.longwood.edu/rci_spring

Part of the Biology Commons

Recommended Citation
https://digitalcommons.longwood.edu/rci_spring/32
The specific aim of this study targets to reduce the rejection in post lung transplant subjects by increasing the amount of CCL21 by injecting the DC/CCL21 vaccination to express T and B cells more efficiently.4

POTENTIAL PITFALLS

- Small sample size of mice
- Death of mice during experiment
- No progression of IPF in mice to determine if worthy of transplant
- Vaccine does not reduce rejection after transplant
- Mice getting fungal or viral infections, in which the vaccine targets bacterial infections

POTENTIAL CONCLUSIONS

- DC/CCL21 inhibits CCL21 to decrease the number of deaths world-wide post-lung transplant
- Overtime, there would be higher survival rates
- More data to help prevent chronic rejection in lung transplant recipients
- Possible leads to curing particular uncured lung diseases like IPF to one day lowering the number of patients on the transplant list

REFERENCES