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1. Abstract 
 
Developmental stability is the ability of an individual to maintain proper development despite 

various environmental conditions, and thus has important implications for the health of an 
individual. Individuals with less stable development are thought to be at higher risk for 
developing non-communicable disease, such as diabetes mellitus and Alzheimer’s disease, 
during adolescence and adulthood. In bilateral organisms, developmental stability can be 
assessed by measuring deviations from perfect symmetry between the left and right sides of the 
body, known as Fluctuating Asymmetry. In this project, we measured the developmental rate and 
Fluctuating Asymmetry of Drosophila melanogaster while subjected to varying metabolic 
conditions differing by sucrose content. Analysis of Fluctuating Asymmetry observed between 
drosophila populations subjected to different concentrations of sucrose did not yield significant 
results; however, various trends in the data elucidated the interactions between developmental 
stability, metabolic stress, and developmental rate. By working to further establish a link 
between these factors, this project supports the development of cost-effective early screening 
methods for diabetes mellitus and related diseases. 
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2. Introduction 
 
2.1. Chronic Disease and Developmental Stability  
 
Chronic diseases reign as a leading cause of death and disability in the United States and 

account for trillions of dollars in health care costs each year (CDC, 2019). Despite ample clinical 
knowledge concerning the pathophysiology of most chronic diseases, management and treatment 
of these diseases remains insufficient. This is due to the fact that many chronic diseases begin to 
wreak havoc on the body’s systems long before any symptoms appear. Additionally, the 
manifestation of disease varies by individual, making chronic diseases difficult to predict on a 
case-by- case basis. As a result, detection of chronic diseases often occurs years after disease 
progression has already begun. While genetic predisposition and lifestyle are two major drivers 
of chronic disease, the predictive power of these two characteristics still proves inconsistent in 
early diagnosis of disease. There are ample examples of individuals who strive to live healthy 
lives and still develop chronic disease, or examples of individuals who have genetic markers for 
a specific disease yet never develop it. Because of such discrepancies in the behavior of chronic 
diseases, the clinical approach to detecting and treating chronic diseases remains limited, and 
thus chronic diseases continue to cause millions of deaths per year in the U.S. alone (CDC, 
2019). As rates of chronic diseases such as diabetes - the fast growing noncommunicable disease 
in the United States (see figure 1) - continue to rise, the need for novel disease detection and 
management is a national health priority (CDC, 2018).  

 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Although genetic and environmental factors have so far proved inadequate as early detection 
criteria, it is well established that these two factors interact in a complex manner to establish 
one’s likelihood of having a disease. Developmental stability serves as a link between these two 
factors and may be the driving force behind chronic disease development. Developmental 
stability is the capability of an organism to develop and grow according to a predetermined 

Figure 1.: Age-adjusted percentage of adults diagnosed with diabetes. 
Source CDC (CDC, 2018). 
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genotype despite external disturbances (Waddington, 1959). Essentially, every organism begins 
life with an established genotype, and development attempts to follow this genetic formula 
perfectly; however, external disturbances such as acquired genetic mutations or environmental 
stressors lead to imperfect development. Such imperfections may prove harmless or they could 
produce a phenotype more susceptible to ailments like chronic disease. Because of this, 
developmental stability is likely a strong indicator of one’s overall health. 

Developmental stability has already been implicated in a variety of chronic diseases such as 
cardiovascular disease, diabetes mellitus, and various cancer types. Recent research in the field 
of developmental origins of health and disease (DOHaD) has supported the conclusion that 
developmental plasticity – the ability to adjust genetic expression to produce the most apt 
phenotype in response to environmental signals during early life – is responsible for establishing 
a set phenotype for the rest of an individual’s life (Lea et al., 2017).  Developmental plasticity is 
an evolutionary tool adopted by organisms to “predict” which traits will provide the most 
successful phenotype in a postnatal environmental. However, if the individual encounters signals 
during development that do not correspond to the environment it will encounter after birth, the 
developed phenotype is oftentimes susceptible to disease or disability. Developmental plasticity 
is driven by the epigenome, the molecular infrastructure that controls gene expression in 
response to external signals (Lea et al., 2017). Identical twins, for example, have the same 
genome yet can exhibit noticeably different phenotypes depending on how each twin’s 
epigenome modulated gene expression in response to different early-life environmental signals. 
Developmental plasticity thus drives development and sets the stage for the life-long health of an 
individual during just the first few years of life.  

A classic example of the role of development plasticity in disease establishment is the 
increased rate of cardiovascular disease and metabolic disorder in individuals whose 
development occurred during the Dutch Hunger Winter (Shultz, 2010). While under Nazi 
occupation in the winter of 1944-1945, the Netherlands experienced a large-scale famine that left 
many eating tulip bulbs just to get through the winter, resulting in many pregnant women and 
children becoming severely malnourished. Interestingly, individuals born during or soon after the 
famine experienced significantly increased rates of metabolic diseases such as obesity and 
diabetes later in life compared to the general population. As developing fetuses and young 
children encountered famine, their metabolisms adjusted for life-long nutrient scarcity. Yet later 
in life, when these individuals could enjoy a calorically-rich diet, their metabolisms were 
unprepared, thus resulting in metabolic syndrome. Epidemiologist Dr. David Barker first 
observed this trend and developed the Barker Hypothesis which states that adverse nutrient 
supply during development increases predisposition to metabolic syndrome (Barker, 1992).  

After the popularization of the Barker Hypothesis, research in the field of DOHaD exploded 
as researchers searched for more trends between developmental stability, epigenomics, and 
noncommunicable diseases. Recent studies have elucidated the epigenomic mechanisms that 
direct cellular physiologies correlating to a specific disease, such as microRNA-driven insulin 
biosynthesis in type 2 diabetes or mitochondrial DNA methylation in Alzheimer’s disease 
(Esguerra et al., 2018; Qazi et al., 2018). Epigenetic programming is even influenced by the 
establishment of the gastrointestinal microbiome during early childhood, and several studies 
have implicated gut microbiota with inflammatory diseases and mental disorders as reviewed by 
Alam et al. (2017). Undoubtedly, developmental stability and plasticity have tremendous roles in 
determining the phenotypic characteristics that drive disease susceptibility for the entirety of 



DEV. STABILITY IN D. MELANOGASTER  Reaver 6 

one’s life, and it is evident that plasticity is heavily influenced by the metabolic environment 
present during development.  

While it is important to acknowledge the immense progress the scientific community has 
made in understanding the pathophysiology of chronic disease, it is equally important to 
recognize the limitations that still exist in the early diagnosis and treatment of chronic disease. 
Despite being able to identify exactly which genes and epigenetic processes may drive the 
progression of a disease, chronic disease detection using this knowledge is still inconsistent and 
is often not the complete story behind disease development. To say the interactions between 
genomics and environment during development are complex is an understatement, and it is 
practically impossible to compound all the different factors contributing to developmental 
stability in order to predict the disease susceptibility, as many are still unknown. Luckily, 
developmental stability evaluates these factors for us and the “result” is reflected in measurable 
phenotypic characteristics, particularly in bilateral animals. 

 
2.2. Fluctuating Bilateral Asymmetry as a Biomarker of Developmental Stability 

 
In bilateral animals, the genome that dictates one’s growth is the exact same for the left- and 

right-side extremities and thus ideal development would produce an organism with perfect 
external bilateral symmetry. Likewise, improper development (i.e. the inability of an organism to 
buffer external disturbances, or developmental instability) would result in small, random 
variations during growth, resulting in some degree of bilateral asymmetry. Therefore, this 
random deviation from bilateral symmetry, known as Fluctuating Asymmetry, is a physical 
phenotypic manifestation of an individual’s genetic make-up, history of environmental 
influences, and overall stability during development (Møller, 1997). Thus, measuring the 
Fluctuating Asymmetry of an organism’s phenotype would be indicative of its developmental 
stability and ultimately could serve as a predictive variable for early screening methods to detect 
chronic diseases. 

In a recent clinical study, Morris et al. (2016) demonstrated a correlation between diabetes 
mellitus and the degree of Fluctuating Asymmetry present between fingerprint pairs. Further 
studies by the same research group indicated that fingerprint patterns, a phenotypic trait that does 
not change after birth, on certain finger pairs had a relatively high predicative score for type 1 
and type 2 diabetes mellitus compared to traditional predicative models such as family history or 
waist circumference. Measuring fingerprint pairs could therefore be used as an effective, low 
cost early screening method for diabetes mellitus that could be employed as early as infancy to 
predict an individual’s disease risk. The current project aimed to further investigate the 
correlation between Fluctuating Asymmetry and diabetes mellitus through the use of a 
Drosophila melanogaster model system subjected to varying metabolic environments during 
development. 

 
 

2.3. Modeling Metabolically-Induced Developmental Instability in Drosophila melanogaster  
 

Interestingly, human and drosophila metabolisms are remarkably similar and therefore 
drosophila serve as useful models for studying metabolic disorders. Despite having different 
insulin-like peptides than humans, drosophila models of diabetes are widely used and, because 
one insulin-like peptide in drosophila, dilp8,  has been implicated in both metabolism and 
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controlling body symmetry, drosophila models are ideal for studying the interactions between 
metabolic environment and asymmetries (Álvarez-Rendón at al., 2018; Colombiani et al., 2015). 
With the discovery of the connection between fingerprint pair symmetry and diabetes mellitus by 
Morris et al. (2016), the current project worked to elucidate some of the underlying factors 
behind this phenotypic manifestation of disease by modeling diabetes in Drosophila 
melanogaster. 

 In preliminary experiments, drosophila were raised on media with varying sucrose 
concentrations and then assessed for asymmetry in wing-vein lengths. Surprisingly, these 
experiments demonstrated that drosophila raised on high-sugar media displayed wing asymmetry 
to a lesser extent than drosophila raised on media with lower sugar concentrations, contradicting 
our expectations. Originally, it was hypothesized that drosophila raised on high-sugar mediums 
would exhibit a higher degree of wing asymmetry compared to drosophila raised on low-sugar. 
Using a well-established recipe for inducing diabetes in drosophila, we expected to observe more 
malformities in our high-sugar group as these drosophila were presumed to be enduring the most 
metabolic stress during development (Musselman et al., 2018). However, another observation 
made during these preliminary experiments supported a possible alterative hypothesis: the high-
sugar drosophila grew at a much slower rate compared to low-sugar flies, indicating that 
developmental rate could be the influential factor behind the observed asymmetry. Thus, the 
question remained as to whether developmental stability – and consequently Fluctuating 
Asymmetry - of our drosophila was driven by early-life nutrient supply or if it was driven by 
developmental rate.  

Research concerning developmental stability of the swordtail fish Xiphophorus multilineatus 
has illuminated the relationship between nutrient supply and developmental rate. Morris et al 
(2012) observed that male sword fish grew at a faster rate when raised on a high quality diet, 
resulting in increased Fluctuating Asymmetry of vertical bars, a sexually selected phenotypic 
trait. When nutrients are favorable during development, an organism may optimize a faster 
growth rate over developmental stability since the environmental provides less nutritional 
stressors, requiring a less “prepared” phenotype. Conversely, a high sugar environment may slow 
growth as an organism must work harder during development to counteract adverse nutritional 
supplies, ultimately optimizing developmental stability over developmental rate. The first 
semester of thesis work was dedicated to exploring how nutrient supply and developmental rate 
interact to influence developmental stability in Drosophila melanogaster and how the 
mechanisms driving these interactions may play a role in the phenotypic manifestation of chronic 
disease in humans.  

  
2.4. Extending Detection to Alzheimer’s Disease 

 
After analyzing wing-vein Fluctuating Asymmetry during the first semester, the second 

semester’s work aimed to extend the analysis performed on drosophila wings to drosophila 
nervous systems. The nervous system is notoriously greedy with the body’s energy supply, 
especially during childhood when crucial brain development takes place. One study estimated 
that brain metabolism during childhood accounted for 43% of the body’s daily energy 
requirement (Kuzawa et al., 2014). The nervous system is thus especially sensitive to the 
metabolic environment present during development and adverse environments can lead to 
impaired brain function.  Not surprisingly, conditions such as high blood sugar and diabetes 
contribute significantly to neurological decline and dysfunction (Rajan et al., 2018). Particularly, 
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the hormone insulin has been shown to play a tremendous role in the progression of 
neurogenerative disease such as Alzheimer’s disease. It seems that insulin plays an integral role 
in promoting proper neuronal function as well as managing biomarker modifications. Disruption 
of this neuronal physiology causes the hallmark cognitive decline observed in Alzheimer’s 
patients and the continuous interplay between insulin-resistance and biomarker progression 
makes this disease so difficult to treat.  

In healthy brains, insulin acts as an important modulator of neurotransmitter release, 
synaptic plasticity, and membrane polarization, which are important mechanisms for learning 
and memory formation (Zhao et al., 2015). However, when the brain becomes insulin-resistant, 
these mechanisms are disrupted as insulin-resistance promotes the dysregulation of biomarkers, 
specifically tau hyperphosphorylation and beta-amyloid plaque accumulation, causing a 
breakdown in important cellular processes (Mullin et al., 2017). Conversely, these biomarkers 
promote further insulin resistance by encouraging microglial inflammatory responses and 
oxidative stress, additional symptoms of Alzheimer disease (Tonnies & Trushina, 2017). 
Interestingly, the neurotoxic proteins and agents of oxidative stress observed in Alzheimer’s 
disease are also present in higher concentrations in the peripheral tissues of diabetic individuals 
versus non-diabetic individuals (Miklossy et al., 2010). Due to shared physiopathology of 
insulin-resistance in both diseases, it is evident that a common underlying metabolic mechanism 
contributes to Alzheimer’s disease and diabetes mellitus, resulting in many researchers calling 
Alzheimer’s disease “type 3 diabetes” (see figure 2).   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
It is likely that the mechanisms that drive these commonalities between both disease were 

programmed during early-life experiences and therefore similar early screening methods could 
be applied to both diseases. The second semester project worked to further demonstrate this 
metabolic similarity between diabetes and Alzheimer’s disease by expanding the first semester’s 

Figure 2. Feedback loops implicated in Alzheimer’s disease biomarkers and insulin 
resistance. As biomarker development progresses, further insulin resistance is 
promoted in brain tissue - one of the many reasons Alzheimer’s disease is so difficult 
to manage and treat. 
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work on diabetes to include models of neuronal insulin resistance using Drosophila 
melanogaster nervous systems. By demonstrating that the same metabolic stress capable of 
inducing diabetes mellitus in drosophila is also capable of influencing nervous system symmetry 
in drosophila, early screening methods used for diabetes mellitus could also possibly be used for 
early detection of Alzheimer’s disease.  

Several studies have already solidified various phenotypic asymmetries as biomarkers of 
Alzheimer’s disease, such as atrophic asymmetry in peripheral Alzheimer’s patients’ nervous 
systems (Derflinger et al., 2011), although these detection techniques are expensive and require 
substantial disease progression. By establishing a shared manifestation of metabolic disorder in 
both wing asymmetry and nervous system asymmetry of drosophila, the research could support 
applying the fingerprint analysis used in diabetes detection as suggested by Morris et al (2016) to 
Alzheimer’s disease as well. Early detection for Alzheimer’s disease could therefore be greatly 
enhanced as it could rely on more accessible phenotypic markers.  

The current project in its entirety worked to conclude that 1) fluctuating bilateral 
asymmetry is a viable biomarker of both diabetes mellitus and Alzheimer’s disease and 2) a 
shared metabolic deficit is the driving force behind both diseases in order to facilitate the 
development of low-cost, early screening methods.  
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3. Methods  
 

3.1. Fly Rearing 
 
Wild-type Canton-S stock flies were obtained from Bloomington Drosophila Stock 

Center. Stock cultures were maintained on Carolina Blue instant media (Carolina Biological 
Supply Company, Burlington NC) under controlled conditions until introduced to control (low 
sugar, 0.15 M sucrose) or treatment media (medium sugar, 0.5 M sucrose; high sugar, 1.0 M 
sucrose; and very high sugar, 1.5 M sucrose) for experimentation. Recipes for all control and 
treatment media were adapted from Musselman et al.(2018) and can be found in table 1. The 
recipe for 1.0 M adapted from Musselman et al. (2018) has been well-established as a recipe that 
induces diabetes in drosophila. Adults stock flies were anesthetized with CO2 and randomly 
introduced to either a control medium or one of three treatment media. Adult flies were left to lay 
eggs on the new media for 48 hours before removal. Control and treatment vials, now containing 
eggs, were kept in an Thermo Fischer Model 3900 Series incubator at 26 degrees Celsius, 50-
60% humidity, and on a 12-hour photoperiod. Developmental rate was accessed using larval 
instar stages as indicators of developmental progression (see figure 3).  
 

 
 
 
 

0.15 M Sucrose   
Agar 5 g 
Brewers Yeast 80 g 
Yeast Extract 20 g 
Peptone 20 g 
Sucrose 51 g 
1.0 M MgSO4  2 ml 
1.0 M CaCl2 3.4 ml 
Propionic Acid 6 ml 
Distilled Water add to 1 L 

 
 

 
 
 

 
 
 
 
 
 

 
 

0.5 M Sucrose  
Agar 5 g  
Brewers Yeast 80 g 
Yeast Extract 20 g 
Peptone 20 g 
Sucrose 171 g 
1.0 M MgSO4  2 ml 
1.0 M CaCl2  3.4 ml 
Propionic Acid 6 ml 
Distilled Water add to 1 L 

1.0 M Sucrose  
Agar 5 g  
Brewers Yeast 80 g 
Yeast Extract 20 g 
Peptone 20 g 
Sucrose 342 g 
MgSO4 x 6H2O 2 ml 
CaCl2 x 2H2O 3.4 ml 
Propionic Acid 6 ml 
Distilled Water add to 1 L 

1.5 M Sucrose  
Agar 5 g  
Brewers Yeast 80 g 
Yeast Extract 20 g 
Peptone 20 g 
Sucrose 513 g 
MgSO4 x 6H2O 2 ml 
CaCl2 x 2H2O 3.4 ml 
Propionic Acid 6 ml 
Distilled Water add to 1 L 

Table 1. Recipes for drosophila control and three treatment media. A) control media 
with 0.15 M sucrose, B) treatment #1 media with 0.5 M sucrose, C) treatment #2 
media with 1.0 M sucrose, D) treatment #3 media with 1.5 M sucrose.  

A 

D C 

B 
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3.2. Wing Dissection & Imaging 
 

Adults that completed their life cycles on the control (0.15 M, N = 30) or treatment media 
(0.5 M, N = 27; 1.0 M, N = 30; 1.5 M, N = 0) were collected for dissection within one week of 
eclosion. After being anesthetized with FlyNap, both wings were carefully dissected from the 
body by gently pulling the wing at its base from the thorax. Wings were then mounted onto 
microscope slides (one wing pair per slide) with Permount® and covered with a coverslip for 
imaging. Images taken by a 4 megapixel Motic Moticam X3 camera attached to a Nikon 
Labophot-2 microscope were accessed using Motic Images Plus Software. The lengths of seven 
specific wing-veins were measured and Fluctuating Asymmetry was calculated as the absolute 
value of the difference between left- and right-side wing-vein measurements (see Figure 4). 
These wing-veins were selected due to their relevance in other studies evaluating asymmetry and 
wing morphology in Drosophila melanogaster (Carter et al., 2009). Fluctuating asymmetry 
scores for the control and treatment groups were compared using an ANOVA single factor 
analysis or student t-test (significance at p < 0.05) to determine if metabolically stressed D. 
melanogaster subjects expressed increased bilateral asymmetry compared to controls.  
 

 
 
 
 

 
 

Figure 3. Life cycle of Drosophila melanogaster. Adapted from Ong et 
al. (2014). 
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3.3. Nervous System Dissection & Immunofluorescence Staining  

Unfortunately, nervous system immunofluorescence staining and analysis could not be 
completed this semester, due to suspension of student research in response to COVID-19. 
Nonetheless, the protocol for immunofluorescence staining was adapted from Manning and Doe 
(2017), and modified for work at Longwood University. Third-instar larvae will be collected, 
bleached, and fixed twice in preparation for immunofluorescent antibody staining of nervous 
systems. Once fixed, larvae will be incubated with Rat-Elav-7E8A10 primary antibody 
(University of Iowa Developmental Studies Hybridoma Bank, Iowa City, IA) for five days 
followed by incubation with dye-labeled secondary antibody for 8 hours. After being 
successfully stained, larval nervous systems will be mounted on microscope slides and visualized 
using a Nikon Labophot-2 microscope with fluorescence attachment. Images taken with the 
fluorescent microscopy will be used to assess the degree of asymmetry present in larval nervous 
systems subjected to the different metabolic conditions. The images taken during fluorescent 
microscopy will be subjected to morphological measurements of nerve branching points 
measurements using ImageJ software, to compare left-side and right-side characteristics of each 
larval nervous system. These data will be collected for both treatment and control groups, and 
compared using an ANOVA single factor analysis or student t-test to determine if metabolically 
stressed D. melanogaster subjects express increased bilateral asymmetry compared to controls.  

 

 

 

Figure 4. Seven different vein lengths, labeled A-G, were measured on each wing of control 
and treatment drosophila. (A) longitudinal vein II. (B) longitudinal vein III - only length 
along the first basal cell. (C) anterior crossvein (D)longitudinal vein IV - only length between 
intersections with anterior crossvein and posterior crossvein, (E) Posterior crossvein. (F) 
longitudinal vein V – only length along second posterior cell. (G) distance between distal 
ends of posterior veins IV and V. Fluctuating Asymmetry was calculated by taking the 
absolute value of the left vein length minus right vein length for all seven veins.  

FA= |left – right| 

left wing  right wing  A 

E D C 

B 

G F 
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4. Results 
4.1 Developmental Rate 
  
 Notable differences in developmental rate were observed between the 0.15 M, 0.5 M, and 
1.0 M populations (figure 5). The 1.5 M sucrose medium did not produce any adult drosophila 
and only three first-instar larvae were noted during the entirely of the observation period. The 
drosophila raised on 0.15 M sucrose experienced the most rapid growth, followed by the 0.5 M 
drosophila, which typically reached life-cycle stages one to two days after the 0.15 M drosophila. 
Drosophila raised on 1.0 M sucrose showed noticeable delay in growth, reaching life-cycle 
stages up to five days later than 0.15 M flies. Differences in population size among the 
aforementioned three groups were also observed, although not quantified, as demonstrated in 
figure 6.                                
 
4.2 Wing-Vein Analysis   
 

The data showed no significant difference in Fluctuating Asymmetry for any of the seven 
wing pairs between the 0.15 M (N=30), 0.5 M (N=27), and 1.0 M (N=30) drosophila populations 
(figure 7). The 1.5 M (N=0) sucrose medium did not produce any adult drosophila and thus was 
not included in any statistical analyses. Variations in the p-values comparing wing-vein pairs 
across the two groups did, however, indicate that some wing pairs may be more susceptible to 
Fluctuating Asymmetry than others. Comparison of wing-vein A (see figure 4) resulted in a p-
value of 0.13 while wing-vein G yielded a p-value as high as 0.96, demonstrating a notable 
difference in the predictive value for each wing-vein.  

Additionally, comparing asymmetries across the three groups by sex did result in 
significant differences for certain vein pairs (figures 8 & 9). Females of the 1.0 M population 
showed a significantly higher degree of Fluctuating Asymmetry for wing-vein D than the 0.15 M 
population with a p-value of 0.02, whereas comparing the same wing-vein between the males of 
the two population resulted in a p-value of 0.97, indicating a large difference between the two 
sexes. Additionally, comparing Fluctuating Asymmetry in wing-vein A of the 0.15 M females 
indicated that they were more asymmetric (p = 0.006) for this wing-vein than the 0.5 M females. 
Wing-vein B also proved to significantly more asymmetric (p = 0.03) for 0.5 M males compared 
to 1.0 M males. Even within the same population, females and males displayed differences in 
Fluctuating Asymmetry (figures 10, 11, & 12). For the 1.0 M population, comparing Fluctuating 
Asymmetry in wing-veins B and E between males and females resulted in p-values as low as 
0.02 and 0.08, respectively (figure 12). Wing-vein E also proved to be significantly different 
between the males and females of the 0.5 M populations (p=0.02).  

 
4.3 Nervous System Analysis   
 

Unfortunately due to the suspension of student research at Longwood University in response 
to COVID-19, nervous system immunofluorescence staining and analysis could not be 
completed. Staining and analysis will be continued in the near future.   
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Figure 5. Developmental rate assessed by the number of days taken to reach each life 
cycle stage by population. Since each individual vial could not be monitored multiple 
times each day, one representative vial from each population was placed in front of a 
camera in order to monitor developmental rates across the four populations (hence, no 
error bars).  

Figure 6. Population growth of 0.15 M, 0.5 M, 1.0 M, and 1.5 M populations twenty 
days after eggs were laid on each medium. A clear gradient in population size can be 
observed across all four groups. The 1.5 M sucrose medium did not produce any adult 
drosophila and thus was excluded from statistical analysis.  
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Figure 7. Comparison of average Fluctuating Asymmetry by wing-vein observed 
in 0.15 M, 0.5 M, and 1.0 M populations. Bars indicate standard error.  

Figure 8. Comparison of average Fluctuating Asymmetry by wing-vein observed in 
females of 0.15 M, 0.5 M, and 1.0 M populations. Significant observed between 0.15 
M females and 0.5 M females for wing-vein A (p = 0.006) as well as 0.15 M females 
and 1.0 M females for wing-vein D (p = 0.02). Bars indicate standard error. 

p = 0.006 p = 0.02 
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Figure 9. Comparison of average Fluctuating Asymmetry by wing-vein observed 
in males of 0.15 M, 0.5 M, and 1.0 M populations. Significance observed 
between 0.5 M males and 10. M males for wing-vein B (p=0.03). Bars indicate 
standard error.  

Figure 10. Comparison of average Fluctuating Asymmetry by wing-vein between 
males and females of 0.15 M population. Bars indicate standard error. 

p=0.03 
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Figure 11. Comparison of average Fluctuating Asymmetry by wing-vein between 
males and females of 0.5 M population. Significance observed between 0.5 M 
males and females for wing-vein E (p = 0.02). Bars indicate standard error.  

Figure 12. Comparison of average Fluctuating Asymmetry by wing-vein between 
males and females of 1.0 M population. Significance observed between 1.0 M 
males and females for wing-vein B (p = 0.02). Bars indicate standard error.  

p = 0.02 

p=0.02 
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5. Discussion 
 

5.1. Data Interpretation and Future Directions  
  
 As this project continues to develop, the data collected during these initial experiments 
has provided valuable insights into the interactions between developmental rate, metabolic 
environment, and Fluctuating Asymmetry and their combined role in establishing developmental 
stability. Clear differences in developmental rate and resulting population size were observed 
between the 0.15 M, 0.5 M, and 1.0 M groups. Although the data did not produce significant 
trends in Fluctuating Asymmetry on a population level between the three groups, significant 
differences in Fluctuating Asymmetry could be observed between the males and females of the 
same population as well as between females or males from different populations. It is worth 
noting that differences in wing size between males and females may account for some of these 
observations and that vein lengths will be normalized by average length of vein A for the 
respective sex in future analyses. Nonetheless, these findings suggest that metabolic stress may 
in fact produce differences in development to some degree. The question remains as to whether 
slower developmental rate in response to metabolic stress may work to mitigate Fluctuating 
Asymmetry or if ideal metabolic conditions optimize faster growth rates over symmetry. In other 
words, a high sugar diet may produce a more asymmetrical population if developmental rate was 
not able to alleviate the burden of metabolic stress. Conversely, ideal metabolic conditions may 
produce a more symmetrical population if developmental rate is slowed. Future experiments 
could equilibrate the developmental rate (i.e. through temperature adjustments) of the two 
populations so as to observe differences in Fluctuating Asymmetries between “high sugar” and 
“low sugar” drosophila that are forced to develop at same rate.  
 Furthermore, future studies could involve comparing genetic models of diabetes or 
Alzheimer’s disease (i.e. using drosophila with predetermined genetic markers for disease) with 
drosophila raised on our modified mediums to observe how Fluctuating Asymmetry may differ 
across the various groups. Because our flies may be optimizing two different developmental 
strategies in response to their metabolic environments, using our 0.15 M medium as a “control” 
may be inaccurate. Thus, using Fluctuating Asymmetry observed in established models of 
disease as controls and comparing our drosophila to this baseline instead may produce more 
conclusive results.  

In addition to producing the aforementioned trends, this project has also established the 
necessary procedures and technologies to perform nervous system immunofluorescent antibody 
staining during future experiments. Perhaps wing-vein symmetry may not be the most adequate 
phenotypic marker of developmental asymmetry due to selective pressure to maintain wing-vein 
dimensions required for proper locomotion (Ray et al., 2016). Future projects must work to 
identify drosophila traits that are more susceptible to Fluctuating Asymmetry during 
development, and thus reflect developmental instability more prominently for disease detection 
purposes. For example, human fingerprints do not provide a necessary adaptation for survival or 
reproduction so their symmetry may be less conserved when undergoing development, as this 
trait is less essential. On the contrary, drosophila wings are paramount to their survival and 
reproduction so perhaps wing-vein symmetry is more highly conserved during development. A 
less essential drosophila trait like thoracic bristle symmetry may be subjected to less selective 
pressure during development as symmetry of thoracic bristles is not vital for survival or 
reproduction, possibly resulting in a higher susceptibility to Fluctuating Asymmetry compared to 
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drosophila wings (Petavy et al., 2006). Therefore, extending the analysis to different phenotypic 
traits – particularly nervous systems, which are especially metabolically sensitive and whose 
morphology can vary widely without direct functional consequences – may yield more 
significant results.  

 
5.2 Extending Trends to Disease Detection 
 

Developing early detection technologies using asymmetry requires a deeper understanding of 
the processes that drive developmental stability, including but not limited to developmental 
stability and metabolic environment. Three major trends observed during this project, while not 
entirely significant, have provided valuable insights into the interplay of developmental 
influences and opened new doors for further research. Firstly, the clear differences in 
developmental rate support the hypothesis that organisms in ideal environments may favor faster 
growth by sacrificing developmental stability since the environment is likely to offer less 
stressors compared to a less idea environment (Morris et al., 2012). The organisms raised in a 
high sugar environment likely had to “work harder” during development to maintain strong 
developmental stability so as to survive in a less than ideal environment during adulthood, thus 
resulting in a slower developmental rate. While developmental rate is not as straight forward in 
humans as it is in drosophila, this observation suggests that the timing of developmental stages is 
important in producing a symmetrical organism and that external signals may affect rate of 
development, not just act directly on morphology. Further research on how developmental rate 
may mitigate the effects of environmental stress is crucial in understanding an individual’s 
developmental stability and thus is greatly needed to support early screening technologies. 

Secondly, the variability in predictive potential of wing-veins suggest that some phenotypic 
aspects of the body may be either more conserved during development or more susceptible to 
deviations resulting from stress during development. Morris et al. (2016) observed a similar 
trend in their fingerprint study as only three fingerprint pairs showed significant ability to predict 
type 2 diabetes mellitus. With this information in mind, future studies can include the analysis of 
different wing-veins or vein patterns as well as novel morphological markers in order to identify 
which phenotypic characteristics may be more (or less) susceptible to Fluctuating Asymmetry 
under varying metabolic conditions. Such research could support extending the search for 
additional phenotypic “disease patterns” to humans as well in order to development more precise 
disease assessment protocols.  

Thirdly, the observation that females tended to have higher rates of Fluctuating Asymmetry, 
particularly for the 1.0 M population, indicates that body size may also be a contributing factor to 
developmental stability. Female drosophila are noticeably larger than their male counterparts, yet 
exhibit the same developmental rate as males. The need to produce a larger organism during the 
same timespan could certainly provide additional developmental stress during female 
development. For human disease detection, perhaps additionally information such as birth weight 
could be used in conjunction with measured asymmetries in assessing an individual’s risk for 
developing metabolic disorders later in life. In fact, babies born with macrosomia (significantly 
higher birth weight than average) are at increased risk for metabolic disorders during childhood, 
and consequently throughout the rest of their lives (Mayo Clinic, 2018). Incorporating the role of 
body size in developmental stability could serve as an important consideration when assessing 
disease risk of an individual later in life. It has also been established that female drosophila 
exhibit different nutrient demands, energy allocation, and insulin signaling than male drosophila. 
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While sex is a more complicated case for humans, this observation supports that screening 
techniques may need to be calibrated depending on sex for optimal results. While some 
phenotypic manifestations of disease may provide high predictive values for one sex, those 
manifestations may prove insufficient for the other sex. More research in determining sex-
dependent differences in the developmental origins of disease is needed. 

 
5.3 Conclusions  

 
Designing technologies based on measurements of developmental stability to predict an 

individual’s risk of developing chronic diseases, particularly diabetes mellitus, could transform 
preventative medicine. Fluctuating asymmetry is an assessible, measurable phenotypic 
manifestation for developmental stability and thus could prove as a key factor in such disease 
detection technologies. This project aimed to elucidate metabolic stress as a driver of fluctuating 
asymmetry as well as the role of developmental rate in either mitigating or exacerbating the 
observed asymmetries. Experimentation resulted in notable differences in developmental rate 
between the 0.15 M, 0.5 M, 1.0 M and 1.5 M populations and, although wing-vein analysis 
results were thus far inconclusive, this project in totality has illuminated the role of 
developmental rate, metabolic environment, and fluctuating asymmetry in establishing 
developmental stability. This project has also identified other factors - such as selective pressures 
of certain bilateral traits, body size, and sex - that could be incorporated into early screening 
protocols to make predictions more accurate for each individual. Further experimentation is 
needed to establish significant trends between developmental rate, metabolic environment, and 
fluctuating asymmetry in order to support the development of early screening methods for 
diabetes mellitus and other metabolic disorders. As rates of chronic disease continue to rise, the 
need for more consistent early screening methods will only increase and thus continued research 
in this field is greatly needed.  
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